Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria.

نویسندگان

  • J M Hernandez-Guijo
  • V E Maneu-Flores
  • A Ruiz-Nuno
  • M Villarroya
  • A G Garcia
  • L Gandia
چکیده

The hypothesis that the buffering of Ca(2+) by mitochondria could affect the Ca(2+)-dependent inhibition of voltage-activated Ca(2+) channels, (I(Ca)), was tested in voltage-clamped bovine adrenal chromaffin cells. The protonophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the blocker of the Ca(2+) uniporter ruthenium red (RR), and a combination of oligomycin plus rotenone were used to interfere with mitochondrial Ca(2+) buffering. In cells dialyzed with an EGTA-free solution, peak I(Ca) generated by 20 msec pulses to 0 or +10 mV, applied at 15 sec intervals, from a holding potential of -80 mV, decayed rapidly after superfusion of cells with 2 microm CCCP (tau = 16.7 +/- 3 sec; n = 8). In cells dialyzed with 14 mm EGTA, CCCP did not provoke I(Ca) loss. Cell dialysis with 4 microm ruthenium red or cell superfusion with oligomycin (3 microm) plus rotenone (4 microm) also accelerated the decay of I(Ca). After treatment with CCCP, decay of N- and P/Q-type Ca(2+) channel currents occurred faster than that of L-type Ca(2+) channel currents. These data are compatible with the idea that the elevation of the bulk cytosolic Ca(2+) concentration, [Ca(2+)](c), causes the inhibition of L- and N- as well as P/Q-type Ca(2+) channels expressed by bovine chromaffin cells. This [Ca(2+)](c) signal appears to be tightly regulated by rapid Ca(2+) uptake into mitochondria. Thus, it is plausible that mitochondria might efficiently regulate the activity of L, N, and P/Q Ca(2+) channels under physiological stimulation conditions of the cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium signaling and exocytosis in adrenal chromaffin cells.

At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels...

متن کامل

BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells.

BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channel...

متن کامل

Dominant Role of Mitochondria in Clearance of Large Ca2+ Loads from Rat Adrenal Chromaffin Cells

Cytosolic Ca2+ (Ca2+c) clearance from adrenal chromaffin cells was studied by whole-cell patch clamp and indo-1 Ca2+ photometry after influx of Ca2+ through voltage-dependent Ca2+ channels. We isolated the rates of Ca2+c clearance by several mechanisms using combinations of the following agents (with their expected targets): Li+ or TEA substituted for Na+ (Na(+)-Ca2+ exchange), 1 mM La3+ applie...

متن کامل

Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.

P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Ro...

متن کامل

Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes.

Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents. The expression of both Cav2.1a (P-type) and Cav2.1b (Q-type) mRNA was demonstrated by RT-PCR in renal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2001