Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria.
نویسندگان
چکیده
The hypothesis that the buffering of Ca(2+) by mitochondria could affect the Ca(2+)-dependent inhibition of voltage-activated Ca(2+) channels, (I(Ca)), was tested in voltage-clamped bovine adrenal chromaffin cells. The protonophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the blocker of the Ca(2+) uniporter ruthenium red (RR), and a combination of oligomycin plus rotenone were used to interfere with mitochondrial Ca(2+) buffering. In cells dialyzed with an EGTA-free solution, peak I(Ca) generated by 20 msec pulses to 0 or +10 mV, applied at 15 sec intervals, from a holding potential of -80 mV, decayed rapidly after superfusion of cells with 2 microm CCCP (tau = 16.7 +/- 3 sec; n = 8). In cells dialyzed with 14 mm EGTA, CCCP did not provoke I(Ca) loss. Cell dialysis with 4 microm ruthenium red or cell superfusion with oligomycin (3 microm) plus rotenone (4 microm) also accelerated the decay of I(Ca). After treatment with CCCP, decay of N- and P/Q-type Ca(2+) channel currents occurred faster than that of L-type Ca(2+) channel currents. These data are compatible with the idea that the elevation of the bulk cytosolic Ca(2+) concentration, [Ca(2+)](c), causes the inhibition of L- and N- as well as P/Q-type Ca(2+) channels expressed by bovine chromaffin cells. This [Ca(2+)](c) signal appears to be tightly regulated by rapid Ca(2+) uptake into mitochondria. Thus, it is plausible that mitochondria might efficiently regulate the activity of L, N, and P/Q Ca(2+) channels under physiological stimulation conditions of the cell.
منابع مشابه
Calcium signaling and exocytosis in adrenal chromaffin cells.
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels...
متن کاملBK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells.
BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channel...
متن کاملDominant Role of Mitochondria in Clearance of Large Ca2+ Loads from Rat Adrenal Chromaffin Cells
Cytosolic Ca2+ (Ca2+c) clearance from adrenal chromaffin cells was studied by whole-cell patch clamp and indo-1 Ca2+ photometry after influx of Ca2+ through voltage-dependent Ca2+ channels. We isolated the rates of Ca2+c clearance by several mechanisms using combinations of the following agents (with their expected targets): Li+ or TEA substituted for Na+ (Na(+)-Ca2+ exchange), 1 mM La3+ applie...
متن کاملDifferential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.
P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Ro...
متن کاملCoexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes.
Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents. The expression of both Cav2.1a (P-type) and Cav2.1b (Q-type) mRNA was demonstrated by RT-PCR in renal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2001